Survey Article Simple Groups and Simple Lie Algebras

نویسنده

  • R. W. CARTER
چکیده

One of the main aims of workers in the theory of groups has always been the determination of all finite simple groups. For simple groups may be regarded as the fundamental building blocks out of which finite groups are constructed. The cyclic groups of prime order are trivial examples of simple groups, and are the only simple groups which are Abelian. The first examples of non-Abelian simple groups were discovered by Galois, who showed that the alternating group An is simple if n ^ 5. The group A5 of order 60 is the smallest non-Abelian simple group. Further examples of finite simple groups are the so-called classical groups, i.e. the linear, symplectic, orthogonal and unitary groups over finite fields, which were first introduced by Jordan [8] and studied in detail by Dickson [4]. These groups are defined as follows. GF(q) denotes the Galois field with q elements, where q is any prime power.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nongraded Infinite-Dimensional Simple Lie Algebras

Nongraded infinite-dimensional Lie algebras appeared naturally in the theory of Hamiltonian operators, the theory of vertex algebras and their multi-variable analogues. They play important roles in mathematical physics. This survey article is written based on the author’s seminar talks on nongraded infinite-dimensional simple Lie algebras. The key constructional ingredients of our Lie algebras ...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Extended affine Lie algebras and other generalizations of affine Lie algebras – a survey

Motivation. The theory of affine (Kac-Moody) Lie algebras has been a tremendous success story. Not only has one been able to generalize essentially all of the well-developed theory of finite-dimensional simple Lie algebras and their associated groups to the setting of affine Lie algebras, but these algebras have found many striking applications in other parts of mathematics. It is natural to as...

متن کامل

Geometries of Orthogonal Groups and Their Contractions: a Unified Classical Deformation Viewpoint

The general aim of this paper is to describe a particular case of a classical scheme which involves a whole class of spaces, and geometries associated to a family of Lie groups. At all different levels of this scheme, either the spaces, the Lie groups or their Lie algebras are related among themselves by contractions, yet their properties can be dealt with in a completely unified way. The famil...

متن کامل

Left-symmetric algebras, or pre-Lie algebras in geometry and physics

In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry and physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs aris...

متن کامل

Semi-simple Lie Algebras and Their Representations

This paper presents an overview of the representations of Lie algebras, particularly semi-simple Lie algebras, with a view towards theoretical physics. We proceed from the relationship between Lie algebras and Lie groups to more abstract characterizations of Lie groups, give basic definitions of different properties that may characterize Lie groups, and then prove results about root systems, pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1963